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ABSTRACT

As hardware complexity increases, software complexity

increases, and software systems become less maintainable by

manual methods. Automated software development methods, like

Rapid Prototyping, have served to increase the maintainability

of modern software systems, and increase customer

participation in the requirements definition process. This

makes software systems more maintainable and increases

customer satisfaction with the first version of the system.

Still, changes are inevitable. The part of the maintenance

problem that automated tools currently do not address, is the

automatic propagation of changes through multiple versions of

the same system.

The Prototype System Description Language (FSDL) is a

language used exclusively for designing and executing rapid

prototypes. This thesis is directed at developing a model for

automatically merging two different versions of a PSDL

program, providing a method for propagating changes through

multiple versions of that program.
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I. INTRODUCTION

Software Development is an ever-increasing and complex

industry. As hardware technology gains sophistication, so

must the software that drives it. In the 1960's, IBM

developed OS/360. It has been reported that it took 5000

person-years to develop and document that system. [Ref. 1]

Since then, hardware has become even more complex. It has

been said that the software needed to operate the Strategic

Defense Initiative Systems will far exceed ten million lines

of code. [Ref. 2] With software systems that sophisticated,

it is easy to see that current software development methods

are not adequate to ensure their reliability. To meet this

challenge, automated software development methods must be

developed which will increase reliability far beyond what it

is today.

Another factor in the need for automated software

development methods is the inability of most customers to

precisely state their reeds in the early stages of a system's

life-cycle. This emphasizes the need for getting the customer

more involved in the early stages of software development, and

a method for providing the customer with a more accurate

feeling about what the software system will do when it is

finished as early as possible. To do this, there must be an

easy way for making changes to software systems throughout the
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system lifetime, from the earliest stages of conceptual design

through system retirement. This, in turn, means that

software must be developed with evolution in mind.

A. SOFTWARE MAINTENANCE

Maintenance can be defined as modification to a software

product after delivery to correct faults, improve performance

or other attributes, or adapt it to a changec.. environment.

[Ref. 3] This mindset about maintenance being done only after

the system is delivered is the traditional notion, and it is

one of the reasons maintenance is so hard. Designers using

that mentality were not forced to design their code in a way

that made making changes easy. According to [Ref. 3], the

average system in use in 1987 was three to four years old and

consisted of approximately 55 separate programs and 23,000

different source statements. Maintenance on these systems is

hard because most of them were not well documented. when they

were designed, and the people who built them are no longer

available to maintain them. This means that a massive effort

is needed to figure out how to change some of them. A

different mindset is needed from the first stages of

conceptual design.

We prefer to think of software evolution as any

modification made to a software product throughout its life-

cycle. Consequently, software should be designed with

evolution as a primary consideration. Some of the factors

which can facilitate evolution are:
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1. Modularity - Modules should be designed to be as self-
sufficient as possible.

2. Readability - Structured programming techniques should
be used whenever possible to compensate for a wide variety
of programming styles.

3. Documentation - Design decisions as well as code should
be well documented and the documentation should be
maintained throughout the life of the system.

4. Simplicity - Designs should be made as simple as
possible. The more complex a system is, the harder it
becomes to understand.

These factors are not sufficient to ensure system

maintainability, but they are necessary. As we mentioned

earlier, software systems in the future are going to be much

larger and more complex. Traditional methods for design and

maintenance will not be sufficient. More innovative ways to

handle these problems will be necessary.

1. Model for Software Manufacture

Software manufacture can be defined as the combining

of primitive components of a software system, through a

sequence of derivations, into one or more software products.

It is software manufacture which establishes the relationships

between the components of a software system and the primitives

from which they were derived. Within the software

manufacturing process, one of the most difficult problems

involves dealing with change.

Changes are inevitable, and they can come in several

different ways. They can be "pre-planned", as there may not

have been enough rime to incorporate all of the proposed

3



capabilities into a system in the time provided, they can be

"corrective", if a bug is discovered in the system, or they

can be "opportunistic", when it is discovered that a change

can easily be made to the original design which will improve

it in some way. When changes are made, problems can develop

if all the components of the system affected by the change are

not modified to deal with the change. As systems get larg r

and more sophisticated, these problems are amplified. [Ref. 4]

In [Ref. 4], a model is presented for managing the

software manufacturing process. It is designed to represent

software systems at a very low level, concentrating on what

the system does and how its components depend on one another.

The model has two parts, the configuration, and a set of

difference predicates, which serve to insure consistent change

incorporation.

The configuration, , consists of a bipartite

Directed Acyclic Graph (DAG), with components' in one set and

manufacturing steps in the other. Manufacturing steps are

non-concrete derivations and processes performed on

components. is a tuple < G, Z, L > where G is a DAG, Z is

the subset of which contains the export components of the

system, and L is a labeling function which assigns distinct

labels to all the nodes in G.

'Components in this model are software components,
development tools, etc., which exist in the manufacturing
environment.
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This is a fairly good model. It provides an

excellent representation of historical data, which is useful

for managing change information. A problem arises when two

separate versions of a system have emerged and the merging of

their capabilities is desired. It also does not provide for

the propagation of changes throughout a series of different

versions of a system. Each such update must be made

ind.vidually. Additionally, the graph contains too many

unnecessary components. A much simpler model which solves

some of these problems is presented in the next section.

2. Model For Software Maintenance

The model for software maintenance contained in

(Ref. 5] is designed to provide a methodology for integrating

information about software maintenance activities and

configuration control. This model assumes the following:

1. Management controli system changes.

2. Actual maintenance is performed outside the central
configuration repository.

3. Products of the configuration are derived from the
repository and installed at the production site.

4. The system configuration remains consistent at all
times.

The model is comprised of two major elements, system

components and maintenance steps. System components are

5



defined as immutable and non-re-derivable2 software objects.

Maintenance steps are defined as activities which can change

the configuration of the system.

The configuration is modelled as a bipartite DAG

G of components (C nodes) and maintenance steps (M nodes),

connected by a set of input arcs, I and a set of output arcs,

0. A sample configuration is shown in Figure 1. Maintenance

steps are labelled M., where q is the number of the step,

using simple enumeration. the input and output sets of M. are

labelled I and OMq, respectively. The following properties

apply to maintenance steps:

1. All maintenance steps can have 0 or more inputs, no more
than one output. VM, I IN 1 0 & 1 0 1 1

2. A maintenance step is empty if and only if it has no
inputs and no outputs. I = OI = = 0

3. If a maintenance step has at least one input, it must

have an output. VM, I. I 0 = I ON I = 1

4. A component cannot be in the input and output sets of

the same maintenance step. c E 0. = -(c C IN)

5. No one component can be the output of two different

maintenance steps. Vms, m) E M, (3c E C such that

((m±, C) E o & (m,. c) E o)) =* m, = M3

6. There is a set of primitives in the configuration which
are not outputs of any maintenance step.

P = {c E C I -3 m E M such that (m, c) E 0}

2Non-re-derivable objects are source objects, while re-
derivable objects are those objects which can be constructed
by applying some tool, or set of tools, to a set of source
objects.
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7. Let D" = (I U 0)" be the reflexive transitive closure of

the union of the input and output relations I and 0, then:

a. One component depends on another if and only if they
share an edge in D" or they are both primitive components
and related by an "is-component-of" dependency.

c, depends on ci !-$ (cj, cj) E D' ,

c1, c E P such that is-component-of(cj, c1 )

b. One maintenance step depends on another if and only if

they share an edge in D*. m, depends on m i 47- (m,, n) E D"

c. M, is the set of maintenance steps affected by a

change to the component c. M, = {m E M I (c, m) G D"

F sets Spec

VI

,. aph-apspod

I Ij / -

I~ h-~ 3 v2a

IV

Figure 1. Sample Configuration in The Model for Software
Maintenance.
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Maintenance steps can be in one of five possible
states:

1. Invoked - A requirement for the step has been
identified, and is under analysis.

2. Pending - The step has been approved, but assets have
not been obligated to perform the step.

3. Implementing - The work is under way.

4. Completed - The work is finished and the output has been
returned to the central repository.

5. Abandoned - The work was stopped before completion or
the step was never approved.3

If a maintenance step is in the implementing state,

it can be turned back to the pending state, however all work

done on this maintenance step is lost and must be redone.

This is impractical, because composite maintenance steps can

be composed of many smaller maintenance steps, and if a large

majority of the component steps are completed when the

composite step is turned back to the pending state, all of

that work is lost.

An atomic maintenance step is defined as a single

change in a single component, its primary input. A component

cl is a direct descendant of a component ci if ci E O, and ci

is the primary input of N, or the primary input of X. is a

direct descendant of c.. This recursive direct descendance

relationship defines evolution genealogy sub-graphs of G as

3A maintenance step can be abandoned at any time in the
first three states. Once it is completed, it stays in the
configuration forever.

a I I !8



trees with primary inputs and their direct descendants. The

genealogy trees have the following properties:

1. All direct descendants of a component c belong to the
genealogy tree, or sub-tree, which has c as its root.

2. There exists a unique path between c and any of its
direct descendants.

When multiple maintenance steps use a component c as

their primary input, then parallel genealogies are formed.

The outputs of these parallel genealogies become different

versions of a system derived from a common base, c. One of

the problems with this model is that it provides no way for

these different versions to be integrated back together to

capture all of the capabilities of both genealogies in one

component. This idea provides part of the motivation for this

thesis.

B. RAPID PROTOTYPING

Rapid prototyping is intended to allow the user to get a

better handle on exactly what his/her requirements are early

in the conceptual design phase of development. It involves

the use of automated tools to rapidly create "a concrete

executable model of selected aspects of a proposed

system"[Ref. 6] to allow the user to view the model and make

comments early. The prototype is then rapidly reworked and

redemonstrated to the user over several iterations until the

designer and the user have a precise view of what the system

should do. This process produces a validated set of
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requirements which become the basis for designing the final

product.[Ref. 6] The prototype can also become part of the

final product. In some prototyping methodologies, the

prototype is an executable shell of the final system,

containing only a subset of the system's ultimate

functionality. After the prototype is approved by the

customer, the holes are filled in and the system is delivered.

In this approach to rapid prototyping, software systems can be

delivered incrementally as parts of the system become fully

operational. [Ref. 6] Figure 2 shows the life-cycle model for

this prototyping methodology.

C. COMPUTER AIDED PROTOTYPING SYSTEM

A set of computer-aided software development tools,

called the Computer-Aided Prototyping System or CAPS is being

developed at the Naval Postgraduate School to support

prototyping of embedded hard real-time systems. [Ref. 6] CAPS

is designed to reduce the amount of effort required by the

prototype designer, by providing an integrated set of tools,

snown in Figure 3, to help design, translate and execute the

prototypes, along with a language in which to design and

program the prototypes.

Computer-aided software development tools are what puts

the word "rapid" in rapid prototyping. The tools provided for

in CAPS are divided into three categories:

10



Goals

Valeriaed Requirements Dsg

Fequirements 
Prototypeyyceel
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Problems Prototype

NoI

Te Performance uemonstrate
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Cosrc Modularization + Objects

Production
System

New [System

Goals
Production

Use

Figure 2. The Prototyping Life-Cycle Model.

1. User Interface

2. Software Database System

3. Execution Support System

The user interface contains tools that support the

prototype designer in designing and programming prototypes.



Intrf'ceDatabase Support
System System

User

SDirected Eyditor

SEditor

I Software

Database
System

Database Base Design Subsystem
Management

Execution Sse

S upport
System

Figure 3. Computer-Aided Prototyping System Tools. [Ref. 8]

the software database system provides tools which search the

software base for reusable components, retrieve them, and make
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them ready for use by the designer in a prototype. The

execution support system provides tools which translate,

schedule, and execute the prototype for the designer. The

prototypes are written in a language designed specifically for

CAPS, called PSDL.

D. PROTOTYPE SYSTEM DESCRIPTION LANGUAGE

PSDL [Ref. 7] is the design based language written

specifically for CAPS, to provide the designer with a simple

way to abstractly specify software systems. PSDL places

strong emphasis on modularity, simplicity, reuse,

adaptability, abstraction, and requirements tracing. [Ref. 8]

Modularity is supported through the use of independent

operators which can only gain access to other operators when

they are connected via data streams. Operators can represent

either functions or state machines, depending on whether or

not they have state variables. Data streams can be one of two

types, data flow streams or sampled streams. Data flow

streams operate like FIFO queues of size one. Once a value is

placed on the stream, it must be read before another value can

be placed on the stream. Sampled streams operate like memory

cells of size one. A value is on the stream until it is

replactd by another value. It is possible, with sampled

streams, that some values could be read more than once, and

some may never be read, because they are replaced before the

stream is sampled.

13



Simplicity is gained through the use of a small number of

language constructs which provide powerful capabilities for

designing and retrieving prototypes. The grammar for the

current implementation of the language, located in Appendix A,

was taken from [Ref. 9] and updated with changes made since

the publication of that source.

PSDL prototypeF are adaptable through the use of control

constraints, constraints can be placed on the inputs and

outputs of operators, as well as timing requirements.

Reusable software components can be modified slightly, when

retrieved, to conform to these constraints. (Ref. 8]

Requirements can be traced in prototypes through the use

of description constructs which can be written to reflect the

requirements used in their design.

PSDL programs are written as a set of PSDL operators and

data types, containing zero or more of each. PSDL operators

consist of a specification and an implementation. The

specification defines the external interfaces of the operator

through a series of interface declarations, provides timing

constraints, and describes the functionality of the operator

through the use of formal and informal descriptions. The

implementation can either be in PSDL or Ada. Ada

implementations are Ada software objects which provide the

functionality required by the operator specification. PSDL

implementations are data flow diagrams augmented with a set of

14



data stream definitions and a set of control constraints.

PSDL types also contain a specification and an implementation.

E. CHANGE PROPAGATION

One of the things that is lacking in the systems we have

discussed is the ability to automatically propagate changes

through multiple versions of the same system. This notion

becomes important when a fundamental change is made to a base

system from which multiple different versions have been

created. Rather than go through each different version

individually and make the required changes, it would be much

more efficient to make the change to the base version, and

then merge that changed base with each of the different

versions, individually, to automatically incorporate the

change in each version. This notion could save a tremendous

amount of time and effort currently spent by system

maintainers to do this. An example of this idea is shown in

Figure 4.

Another view of this idea, portrayed in Figure 5,

addresses the problem mentioned in the discussion of the Model

for Software Maintenance, regarding re-combining parallel

genealogies. If two different modifications of a base program

contain useful functionality, then automatically integrating

these modifications into a program which contains the

important aspects of both modifications should be possible.

This thesis is directed towards developing a precisely

defined model which shows how this can be accomplished for

15
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A B

A w/ Base____ B w/

chg chg

ase w/ ase w
chg chg

Figure 4. The Notion of Change Propagation Represented
Graphically.

PSDL programs. In Chapter II, we review some work previously

done on merging pure extensions and integrating modifications.

In Chapter III, we take the ideas described in Chapter II and

adapt them to PSDL to formulate our model.
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Figure 5. The Idea of Merging Two Different Versions of a Base
Program into a Merged Program with the Significant
Capabilities of Both Versions is Similar to Propagating
Changes.
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II. PREVIOUS WORK

This chapter explores some of the work that has been done

by other researchers in this area. Section A discusses work

on merging software extensions. [Ref. 10] Section B presents

an approach to integrating non-interff..ring software

modifications. [Ref. 11]

A. MERGING SOFTWARE EXTENSIONS

1. Extension vs. Modification

Program extensions are additions to the program

which extend the domain of the partial function without

altering initially defined values. Modifications are

additions or changes which do alter initially defined values.

In other words, program extensions add functionality to the

base program without altering the already existing

functionality. For example, consider the program in Figure 6.

This program takes two real numbers as input, checks to see if

the first is an approximation of the second, and prints "True"

if the difference is relatively small and "False" otherwise.

This program can fail to produce an output for some inputs,

namely y = 0.0. It can easily be extended by adding a filter

to check for this possibility, as shown in Figure 7.

Pr.)gram modifications, on the other hand, change the

original functionality of the program. Program Approx_2,

shown in Figure 8 is an example of a modification. This
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program Approx(input, output);
const

eps := 0.00001;
var

x, y: real;
begin

readln (x);
readln (y);
if (abs((x - y)/y) _< eps)) then

writeln ("True");
else

writeln ("False");
end.

Figure 6. Example: Program Approx Diverges if y 0.

program Approx_l(input, output);
const

eps := 0.00001;
var

x, y: real;
begin

readln (x);
readln (y);
if (y <> 0) then

if (abs((x - y)/y) - eps)) then
writeln ("True")

else
writeln ("False")

else
if (abs(x - y) < 0) then

writeln ("True")
else

writeln ("False")
end.

Figure 7. Example: Program Approx 1 is a Compatible Extension
of Approx Which is Defined for all Inputs.
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program computes a slightly different approximation relation

than the program Approx. Since the program no longer provides

the original functionality, a modification has occurred.

More formally, using an approximation ordering C,

if p is a base program and p E q, then p approximates q and

q is an extension of p. That is to say that q agrees with p

everywhere p is defined, and q may be defined in cases wb ,re

p is not. [Ref. 10)

program Approx_2(input, output);
const

eps := 0.00001;
var

x, y: real;
begin

readln (x);
readln (y);
if (abs((x - y)) S eps)) then

writeln("True");
else

writeln("False");
end.

Figure 8. Example: Program Approx_2 Uses a Different
Approximation Method.

With this ordering in mind, two specifications p and

q can be merged by finding the least common extension of

p and q, written p U q, where p and q are base specifications

and p U q is the merged specification. The least common

extension is in general not computable, so an approximation is

used. [Ref. 10]
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2. Definitions

In [Ref. 10], only four domains were considered;

specifications, functions, programs, and data types. These

four domains are defined in Figure 9. All domains are treated

as lattices.' The lattice for a domain representing a data

type D, can be defined as the set D = D, U. { I, T }, where I

approximates everything and T is an extension of everything.

The definition of the extension relation for D is:

x C_ y <=:> (J- -- x) , (x =-- y) v (y - T ) '

Specification: Models Intended Behavior

Function: Implements Actual Behavior

Program: Algorithms Defining Partial
Functions

Data Type: Set on which Programs Operate

Figure 9. Definitions of Relevant Domains.

'Lattices are partially ordered sets with a least upper
bound and a greatest lower bound. [Ref. 10]

2The strong equality relation x S y results in True if x
and y are the same element, and False otherwise, for all
elements of D including I and T.
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In merging extensions, I represents an unsuccessful

computation, and T represents the results of combining

incompatible 3 data values.

In [Ref. 10] data types are viewed as heterogeneous

algebras, where each primitive operation f of the algebra is

extended to a full lattice via the following properties:

1. x i  -I f(x1 , ... , xj,..., x, ) = I and

2. (x -T & x I for 1 < j 5 n) =
f(x,, ... , xi, ... , xn) -T, for 1 <_ i S n.

Property 1 says that for any element xi, if xi - ±

then any operation f with xi as a parameter returns I.

Property 2 says for any x, in the parameter list of f, if xi

= T and no x, = I then f returns T. Conditionals for this

domain are extended by the following:

1. (if I then x else y) I

2. (if T then x else y) T.

The domains for functions and specifications are

defined as mappings on data type domains, as shown in Figure

10. Orderings for these domains are defined as follows:

1. For f,g E Func, f E g t* Vx E D [f(x) E g(x)].

2. For s,t E Spec, s L t t VxE D,
y G R[s(x,y) L t(x,y)J.

3An unsuccessful computation includes infinite
computations, and computations which terminate abnormally or
with an error message.
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Func = D -4 R

Spec = CD x R] -+ Bool

D, R are Data Type Domains.

D --* R is a set of continuous functions
with respect to C.

Figure 10. Domains for Functions and Specifications.

The limitation to continuous functions is not

considered a "serious restriction", as all computable

functions are continuous.4 (Ref. 10]

Dom: Spec =* Powerset[ D 1,

Dom(s) = {x E DI 3 y E R [True E s(x,y)]}

Sat: [Func x Spec] -4 Bool,

Sat(f,s) < V x e Dom(s) [True E s(x,if(x))]

Figure 11. Definitions of Domain and Satisfy.

Since specifications which leave part of the input

space unconstrained are of interest, the definitions shown in

Figure 11 are provided to clarify what it means for an input

value to be in the domain of a specification and for a

function to satisfy a specification. The domain of a

4A function f is continuous if and only if f(LIS) = Uf(S),
for all directed sets S. S is directed if and only if every
finite subset of S has an upper bound in S.
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specification is that set of input values for which an

acceptable response can be provided, thus Dom(s) is the set of

values of x in the input domain D for which there exists an

output value y in the output domain R . A specification for

a function f applied to a pair (x, y) will yield a True if y

is an acceptable value for f(x), False if not, I if the

specification does not say whether y is acceptable, or T if

the specification is inconsistent with respect to whether y is

acceptable or not. T would be the result if two conflicting

specifications were merged. A function f satisfies a

specification s if and only if for every value x in the domain

of s, f returns a value which is acceptable. Figure 12 shows

an example used in [Ref. 10] to clarify this idea. The

specification s yields I if x < 0. In these cases, a correct

function can yield any value.

s(x,y) = if 0 x then I (y - x2)I 1 E else I.

Figure 12. Example: A Specification for a Square Root
Function.

3. Program Merging

The least common extension of two functions is not

computable in general. [Ref. 10] Since the least common
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extension is the desired result of a merge operation, the

theorem shown in Figure 13 is provided.5

Theorem: Correctness of Extensions

If s, t are monotonic, f C: h, g 1 h,
Sat(f, s), and Sat(g, t) then Sat(h, (sli t)).

Figure 13. Correctness Theorem. (Ref. 10]

This theorem states that given two monotonic6

specifications, s and t, and three functions, f, g and h, if

f satisfies s and g satisfies t, then any common extension h

of f and g satisfies the least common extension of s and t.

The function h is an approximation for the least common

extension of f and g, and is sufficient. An approximation can

yield an inconsistency in some cases where consistent

combinations are possible, but an inconsistency is more

acceptable than an undefined or diverging computation, because

it can be detected at merge time.

A program consists of a set of function definitions

accompanied by an expression. The merging of two such

5A proof of the Correctness Theorem can be found
in [Ref. 10].

5A function f is monotonic if and only if
x E y =* f(x) E f(y) 2
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programs will result in a third program containing a set of

functions according to the following rules:

1. Functions which appear in one of the input programs
and not in the other will appear in the merged
program unchanged.

2. Functions which appear in both of the input
programs with the same number of parameters, will be
merged.

3. Functions which appear in both of the input programs,
but with a different number of parameters, will be
merged. The formal parameter list will contain a T at
the place where the inconsistency occurs.

Expressions are merged using normal forms. [Ref. 10]

uses rewrite rules to reduce expressions to normal forms. For

example, consider the rewrite rules:

1. y+w= x

2. z w

Using these rewrite rules on the expression

(x x (y + z)) reduces it to the expression (x x x) . Figure 14

provides an example of their use. Normal form merging can be

strengthened if axioms and theorems about the data structures

are added to the rewrite rules.

Function definitions can be merged using normal

forms also. Semantically equivalent function calls are merged

by renaming formal parameters in one input version to match

the other version, if necessary, and inserting it into the

merged program. Even some function calls with the same number

26



(if x = y + w & w = z then x x (y + z) else I)

merged with

(if x = y + w & w = z then x x (y + w) else 0)

yields

(if x = y + w & w = z then x x x else 0)

Figure 14. Example: A Merge Using Rewrite Rules.

of arguments, but not semantically equivalent can be

consistently merged by creating a new function.

The work done in [Ref. 10] was the first of its kind

that we were able to find. It provides a mathematical

foundation for performing program merges, and shows that

merging programs is possible. The next section builds upon

this foundation, and provides an algorithm for merging two

modifications of a base program.

B. AN ALGORITHM FOR INTEGRATING PROGRAM MODIFICATIONS

Many times in the software evolution cycle, base programs

are altered or enhanced in different ways to meet the needs of

different customers. This leads to the development of

parallel genealogies, as described in Chapter I. At a later

time in the evolution cycle, a customer may want a program

which has all the capabilities of two different genealogies.

This leads to the need for some automated way of integrating

two genealogies into a single working program. This automated
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integration method could also be used to propagate changes

made to a base program through all of its offspring. This is

accomplished by making the change to the base program, and

then integrating that changed base program with each of the

offspring.

In [Ref. 11], an algorithm is presented for integrating

two non-interfering modifications of a base program. The

integrdtion produces a third program which reflects both

modifications. This integration method can be useful in

recombining parallel genealogies as illustrated above. The

algorithm uses program dependence graphs (PDGs) to abs.tractly

represent the programs, then by using program slicing,

determines which portions of the two versions are different

from the base program. Using this information, the algorithm

determines if the changes interfere7 with each other. If they

do not interfere, the different program slices are combined

into one integrated PDG, which is then transformed into the

final version of the program.

1. Program Dependence Graphs

As mentioned earlier, (Ref. 11] uses PDGs to

automate the merging process. A PDG for a program P is a

directed graph, G. with several kinds of vertices connected by

7Versions A and B interfere with respect to a Base
program if 3 an initial state and variable x such that A, B,
and Base all compute different values of x.
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several different kinds of edges. The vertices represent one

of the following:

1. The Entry Vertex

2. Initial Definitions: "x := Initial State(x)"

3. Assignments

4. Control Predicates

5. Final Use Statements: "FinalUse(x)"

Edges represent dependencies between vertices:

1. Control Dependencies:

2. Data Dependencies:

a. Flow Dependence: =f

b. Def-Order Dependence: =do

Control dependence edges, v1  c v2 are contained in

G, if and only if one of the following properties holds:

1. v i is an entry vertex and v 2 represents a component of
P not subordinate to a control predicate. This type of
control dependence edge is always labeled True.

2. v is a control predicate and v 2 is a component
immediately subordinate to v,.

a. If v, is a while predicate and v, is in the loop
body, the edge is labeled True.

b. If , is a conditional predicate, the edge is
labeled True if v 2 is on the then branch, False if
v2 is on the else branch.

Data dependence edges, v1 = v 2 indicate that v, must

occur before v2 for data to be valid. G, contains a flow

dependence edge, v, =. v, if and only if:
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1. v, defines a variable, say x.

2. v 2 uses x.

3. Control can reach v 2 after v i along a path that
doesn't change the value of x.

Flow dependence edges due to a particular x appear

as (= x). Flow dependencies are further classified as loop

carried (=:,)or ioc ) independent(=>,) . v2 is dependent on v,

along a loop independent edge, v, v 2 if in addition to a,

b and c above, there is an execution path that satisfies c and

does not include a backedge to the predicate of the loop that

encloses v 2 and v1 . v 2 is dependent on v, along a loop carried

edge for a loop L, v, 1cL) V2, if in addition to 1, 2, and 3

above, the following properties also hold:

4. There is an execution path which satisfies 3 and
includes a backedge to the predicate L.

5. vi and v2 are enclosed in loop L.

Def-order edges, v, =do v 2, appear in G if and only

if the following properties hold:

1. v, and v 2 are both assignments to the same variable x.

2. vi and v2 are in the same branch of every conditional
statement that encloses them.

3. There is another vertex v. that reads x and is
dependent on both v, and v2 along flow dependence edges.

4. v, occurs before v 2.

Using these components, a program dependence graph

can be constructed for any program. Figure 15 sh. s an

example of a simple program and Figure 16 shows its
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program nada
sum 0;
x :=;
while x < ii do

sum := sum + x;
x := x + 1;

end
end(x, sum)

Figure 15. Example: A Simple Program to Illustrate Program
Dependence Graphs.

c /T
:=0 C

Figure ~ ~ X: 16 wxml:hhirormleede Grp fo the

Progra"nada

associated PDG. By analyzing parts of this graph which affect

a certain variable, one is able to observe the effects of a
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change to the program with respect to that variable. This is

done using a technique known as program slicing.

2. Program Slicing

The program slice of a graph G with respect to a

vertex s is the subgraph of G containing all vertices which

can reach s by way of control or flow dependence edges, along

with the edges.

V(G/s) = {w e V(G) I w Zc s}

To get the slice of a graph G with respect to one of

the output variables, say x, merely take the slice with

respect to the vertex labeled "FinalUse(x)". Def-order edges

are contained in the slice only if the vertex which depends on

it is also included in the slice. This can be extended to a

set of vertices S = {s,, s2, . . .. s, by taking the union of

the vertex sets of all of the individual program slices.

Figure 17 shows an example of slice of the program nada taken

with respect to the variable x. Figure 18 shows the

corresponding PDG.

3. Program Semantics and Program Dependence Graphs

The problem with text merging, as has been pointed

out several times, [Ref. 10,11] is that it discounts the

influence of semantics on program structure. In merging

programs, the semantics must be merged as well. PDGs provide

a way to do that.
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program nada x
x := 1;
while x < 11 do

x := x + 1
end

end (x)

Figure 17. Example: The Slice of the Program nada Taken with
Respect to x.

Figure 18. Example: Program Dependence Graph for nada x.

It can be said that two programs are equivalent if

they provide the same results for all possible input values.

Two programs P & Q are strongly equivalent, if and only if,

for alJ. possible states U, P & Q both diverge when initiated
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at Y, or they both halt with the same final values. If they

are not strongly equivalent, then they are not equivalent.

[Ref. 11] provides the theorem shown in Figure 19. This

theorem states that if two PDGs are isomorphic then their

representative programs are semantically equivalent. The

contrapositive to that is inequivalent programs have non-

isomorphic PDGs.

Theorem: If P, Q are programs such that G, is isomorphic
to G., then P is strongly equivalent to Q.

Figure 19. Strong Equivalence Theorem.

Another theorem stated in [Ref. III is the Slicing

Theorem shown in Figure 20. This theorem states that for Q,

a slice of program P, P & Q behave equivalently at all places

which are common to both P & Q.

Theorem: Let Q be a slice of program P with respect to a
set of vertices. If T is a state on which P halts, then
for any state Y' that agrees with a on all variables for
which there are initial-definition vertices in GQ:

(1) Q halts on 0'
(2) P and Q compute the same sequence of
values at each program point of Q.
(3) The final states agree on all variables
for which there are final-use vertices in GQ.

Figure 20. Slicing Theorem.
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4. Determining Behavior Differences in Variants

In order to integrate two different versions of a

base program, their differences from the base must be

determined. This can be done using the PDGs of the different

versions. This model assumes that only changes in the

behavior of a modification with respect to its base are

significant. If the slice of GD,,, with respect to a vertex v

is different from the slice of GA, where A is the

modification, with respect to v, then this is an indication of

possible changed behavior. All such vertices where GBAsE and

GA differ are called the affected points APaAsE of GA. The

slice GA/APA,BAE is a graph which captures the behavior of A

that is different from the BASE. Determining the affected

points by checking the program slices for every vertex in the

graph is not very efficient. [Ref. 11] presents a function

for doing this that requires at most two complete examinations

of the graph. It is the function called AffectedPoints[Ref.

11, P. 21], and is based on the following three observations:

1. All vertices in GA but not in GAm are affected points.

2. Each vertex w of GA with a different set of incoming
flow or control edges than in G... gives rise to a set of
affected points, namely the vertices which can be reached
via zero or more flow or control edges from w.

3. Each vertex w of G. with an incoming def-order edge,
due to a vertex u that does not appear in GBE, gives rise
to a set of affected points, namely the vertices that can be
reached via zero or more flow or control edges from u.
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5. Merging Program Dependence Graphs

Once the PDGs have been created for the different

modifications and the base, and all the differences between

the modifications and the base have been determined, the

merged PDG GM must be created. G, is formed by taking the

union of the slices representing the changed behaviors of

versions A and B with respect to the base and the s ice

representing the preserved behavior of the base in both

versions A and B. This final slice contains the subset of

V (GE) for which the slices in all three versions are

isomorphic, and is represented by PPSCAB.

1. PP1E,AB = {V E V(G.A ) I (GAsE/v) = (GA/v) = (GB/v)}

2. GM = (GA/APA,BASE) U (G,/AP,,, ) U.J (G /ppBA,) A)

6. Determining Interference Between Modifications

A merged PDG created as described above can

inaccurately reflect the changed behavior of the two

modifications in two ways. First, the union of two feasible'

PDGs is not necessarily a feasible PDG. Secondly, G, may not

preserve the differences in the behavior of the modifications

with respect to the base. Interference when either of these

conditions occurs. Testing for interference due to the first

condition is done during the program reconstitution process.

A theorem is provided in Reference 5 which states that the

8A PDG G, is feasible if it is a PDG for a program P. The

slice G/S is feasible if S c V(G) and G is feasible.
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function ReconstituteProgram will succeed if and only if G. is

feasible. Testing for interference due to th- second

condition can be done by merely checking the following

condition:

GM/APA.,Aj - GA/APABsE and G/AP,., =GB/AP,.,S,

7. Program Reconstitution

Program reconstitution is accomplished through the

use of a function called ReconstituteProgram. This function

first attempts to order the tree created by the control

dependencies between the vertices using the flow dependencies.

It then transforms the graph into an abstract syntax tree from

which a program is formed. A PDG is then created for the

program created and is checked against Gm. This function will

fail if either the vertices cannot be ordered or the PDG of

the created program is not isomorphic to GM.

The algorithm Integrate described in this section is

far from perfect, but up to this time, seems to be the most

complete work of its kind. Portions of the algorithm still

have problems, though. One example is that the ordering of

the vertices done in Step 5 of the algorithm is a problem that

is NP-Complete.

C. SUMMARY

In this chapter, we have explored two different

approaches to the software integration problem. In Section A,

work done in modelling the merging of pure ey .ensions of a
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program was presented. This provided a sound foundation for

understanding the work done in Section B. Section B explored

the integration of non-interfering versions of programs

through the use of program dependence graphs and an algorithm

for integrating different slices of the graphs for different

versions into a merged graph, from which a merged program can

be created. These two bodies of work have helped

significantly with our understanding of the complexities of

program integration and the development of a model to account

for those complexities.
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III. A MODEL FOR MERGING PSDL PROGRAMS

PSDL programs are made from the combination of one or

more Abstract Data Types and/or Operators. Since, for the

current implementation of PSDL, all Abstract Data Types are

implemented in Ada, merging them is not within the scope of

this thesis and is not included in our model. We do model the

merging of a base PSDL operator, Base, with two modifications

or extensions, A and B, of Base, into a least common

extension, M. We refer to this three-way merging model as

"change-merging", to prevent confusion with other merging

models. This chapter defines the operations, H, U, and -,

and the relation E as they pertain to change-merging A, Base

and B into M. As was pointed out in Chapter 2, [Ref. 10]

tells us that the least common extension of two programs is

not computable in the general case. This fact is also true

with PSDL programs. We will show that an approximation to the

least common extension is enough to provide a successful

change-merge in most cases.

The relation E is defined as the approximation relation

for the lattice created by combining all PSDL operators

together with a T and a I as shown in Figure 21. If Y is an

extension of X, then we say X approximates Y, written X E Y.

The F, or top element, is an extension of all possible PSDL
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operators. This is an overconstrained artificial component

which represents an inconsistency. The I, or bottom element,

is an approximation of all possible PSDL operators. This is

an artificial unconstrained component that represents an

undefined element. Having these components in the lattice

provides a way for us to completely define a change-merge

operation on PSDL operators. If T is the result of a change-

merge operation, there is no consistent way to provide a

change-merge that is syntactically correct. I, on the other

hand, is a component that is an undefined (i.e. an

unimplemented or non-terminating program).

The difference between two PSDL operators, A - B, gives

the behavior found in A and not in B. Any functionality which

is common to both operators is not included in A - B. The

greatest common approximation of two PSDL operators, A and B,

is written A H B. The greatest common approximation of three

operators, A H Base H B gives us the behavior which is common

to all three operators.

To get the desired behavior of M we must combine this

common behavior, A H Base n B, with the difference between

the behavior of Base and each of the two modifications or

extensions, A - Base and B - Base. From this we can conclude

that change-merging the three versions can be done using the

following formula:

M = A[Base]B = (A n Base H B) U A - Base U B - Base.
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T

Figure 21. The Set of All PSDL Operators Forms a Lattice.

It turns out that it is not necessary to use the greatest

common approximation of all three operators. The difference

between A n B and A n Base n B is contained in the

modifications A - Base and B - Base, as shown by the following

equations and inequalities:

(A H B) - (A H Base H B) = (A n B) - Base =
(A - Base) H (B - Base) C

(A - Base) U (B - Base)

Thus in merging the three versions, it is sufficient to

merge the greatest common approximation of A and B with the
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behavior differences between the two modifications and the

Base, as shown in the following:

M = A[Base]B = (A H B) U (A - Base) U (B - Base).

This chapter defines what this equation means in change-

merging the different components of a PSDL operator.

PSDL operators consist of two major parts: a

specification and an implementation.' The specification of

an operator A, denoted SA2 , defines the external interfaces of

the operator and identifies its functionality through the use

of text descriptions and keywords. The change-merging of two

PSDL specifications is discussed in Section A. The

implementation part of an operator A provides an Enhanced Data

Flow Diagram consisting of a data flow diagram, a set of

internal data streams, and a set of constraints which control

the internal operations of the operator. For this model, we

separate the implementation part of the operator into two

separate and distinct problems. The first is change-merging

two simple data flow diagrams, denoted DA and D,, discussed in

Section B, and the second is the integration of two sets of

internal data streams, denoted DSA and DS,, and control

constraints, denoted CA and C,, discussed in Section C.

'The change-merging of specifications and implementations
is different, so we handle it separately.

2In our model, the subscript of a set signifies which
operator it represents.
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A. SPECIFICATIONS

The specification of a FSDL operator, A, tells the rest

of the program what the operator does. Changes to the

specification of an operator ptoentially affect all of the

other parts of the program where the operator is used. We

assume the author of a change to an operator specification has

also made the necessary changes in all of the contexts where

the operator is used. For this reason, change-merging

operations must be applied to entire prototypes. However,

changes to entire programs are merged by merging changes to

corresponding sub-components. This section focuses on the

change-merge operation for the specification of each sub-

component.

1. Interfaces

The interface of a PSDL operator is the definition

of the operator's external contacts. It contains the input

set expected by the program, IA, the output set that can be

expected, 0 , and the set of generic parameters that may be

instantiated, GNA. 1,, O, and GNA are all ordered sets. It

also contains a set of internal state variables, StA, a set of

possible exceptions, E,, and a set of timing requirements that

are met by the program, TA. StA, EA, and TA are all unordered

sets.

a. Ordered Sets

Ordered sets are a significant building block

for many programming languages, including PSDL. For the
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purpose of change-mergce operations, ordered sets should be

modelled using a flat lattice, as shown in Figure 22. When

the order of a set is significant, then any change made to the

set is an incompatible change and creates a set which is

neither an approximation nor an extension of the original set.

This means that the only set which is an approximation for the

orderf I set is the undefined set, signified by the I in Figure

22, and the only set which is a compatible extension of the

ordered set is the overconstrained set signified by the T in

Figure 22. The applications of this structure to PSDL

specifications are explained next.

iT
( {a:integer} {a,b:integer} {c:real} {d:rational}

Figure 22. Ordered Sets Have a Flat Lattice Structure.
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(1) Input and Output3

Input and Output interfaces are sets of

input and output streams. The order of these sets is

significant because actual parameters are associated with

formal parameters based on the order in which they appear. In

change-merging IA, IS and I,.. into I, any change between the

interface set of Base and the two modified versions is

significant, and must be preserved in the change-merged

version. The change-merged set of inputs, or outputs, is

determined by the following rule:

I. = [ (,A - I,...) U (IA H IS) U (IS -

Based on this rule, one of the following

three situations can occur:

1. If both of the modifications have the same interface
set as the base, then: IM = I U I..o U J = IBo.

2. If one of the two modifications, say I,, is the same
as the base and the other is not, then:

'N U IU'

3. If both of the modifications are different from the
base version, then: I = 'A U _ U is = T.

The first situation is the case in which

no changes were made between the inputs of the Base and the

two modifications. In this case, the change-merged version

3The change-merging of input and output sets is
identical, so only the change-merging of input sets is shown
here.
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should have all of the same inputs, or outputs. The second

situation is the case in which only one of the modifications

changed from the base. In this case, the change from the base

is significant and must be preserved in the change-merged

version. The third situation is the case where both of the

modifications changed from the base. The result is a conflict

because there is no proper PSDL specification that is

consistent with both modifications.

An example of an interface change-merge is

shown in Figure 23. In this example, I, Z IB..1, but I. IBa..o,

so IIA. OBa. OA I OB, 50 OM .

SBa.o = INPUT
x: integer
y: real

OUTPUT
w: integer
z: string

SA = INPUT Sa = INPUT
x: integer x: integer

OUTPUT y: real
w: integer OUTPUT
t: integer w: integer
z: string

SM = INPUT
x: integer

OUTPUT
T

Figure 23. Example: An Interface Merge.
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(2) Generic Parameters

The Generic interface is contained only in

template operators. Template operators are operators in the

Software Base used to instantiate software components.

Change-merging generic parameters is similar to change-merging

input and output parameters with the exception that in

addition to value parameters, generic parameter sets may also

contain operator parameters and type parameters. Changes to

generic sets will follow the same rules as Input and Output

sets. Figure 24 shows an example of a change-merge operation

on generic parameters.

b. Unordered Sets

Unordered sets are modelled using a "Powerset

Lattice '
,
4, as shown in Figure 25. Because unordered sets are

modelled using this type of lattice, more freedom can be

exercised in change-merging them. Change-merge operations do

not follow the same rules for these unordered sets as for

ordered sets.

(1) States

State variables differ from input and

output variables in that, abstractly, they are tuples,

containing a name, a type and an initial value. As the set of

state variables is unordered and invisible to the rest of the

program, the state set can be increased or decreased without

4A "Powerset Lattice" is a lattice whose ordering is
based the powersets of a given data type. A is a compatible
extension of B, if A is a subset of B.
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GN,.. = GENERIC
tl: type,
t2: type,
ol: operation[il,i2:tl,oi:t2],
vl: integer

GNA = GENERIC
tl: type,
t3: type,
o2: operation[il:tl,ol:t3],
vl: integer

GN, = GENERIC
tl: type,
t2: type,
ol: operation[il,i2:tl,ol:t2],
vl: integer

GNM = GENERIC
tl: type
t3: type
t4: type
o2(il:tl,ol:t3],
vl: integer

Figure 24. Example: A Merge of Generic Parameters.

affecting other parts of the program. In change-merging state

variable sets, the operations [, U, and - are equivalent to

the corresponding set operations, U, n and -. The third part

of the tuple, the initial value, requires an additional check

in the change-merging process. These initial values are

ordered using a flat lattice, because they are ordinary data

values. The initial value of a change-merged state variable

follows the same change-merging rules as input and output

variables. If all three versions have different initial

values for the same state variable, then the change-merged
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{a, b, cl

[a,b} ta, c) 1b, c)

t I

Figure 25. Unordered Sets Have a Powerset Lattice Structure.

version will contain a T in the place where the initial value

is assigned. If only one of the modifications assigns a

different initial value than the base version, then the

change-merged version will contain the initial value of the

one that was different. Figure 26 shows an example of change-

merging state variable interfaces. In this example, the state

variable s is assigned a value in Base which is changed by

version A, but not B.

(2) Exceptions

The exceptions interface is a list of

identifiers which denote exception values which may be

returned by the operator. Consequently U, [1, and - can be
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St~aea~

STATES
s: integer initially 0
t: real initially 30.0

StA St3 =
STATES STATES

r: natural initially 10 p: integer initially 0
s: integer initially 5 s: integer initially 0
t: real initially 10.0 t: real initially 20.0

St, =
STATES

p: integer initially 0
r: natural initially 10
s: integer initially 5
t: real initially T

Figure 26. Example: A Merge of State Variable Interfaces.

interpreted as the corresponding set operations, U, n, -.

Exceptions which appear in one or both of the modified

versions, and not in the base, will appear in the change-

merged program. Exceptions which appear in the base and do

not appear in at least one of the modifications will not

appear in the change-merged program. The following formula

defines the exception set of the change-merged program, EM:

EM = [EA r) E.] U [EA - E9...] U [E, - Es ..]

The expression EA n E, yields the set of

exceptions which are common to all three versions. The

expression E, - E... yields the set of exceptions which are in

modification A and not in the base. The expression E. - ES,

yields the set of exceptions which are in modification B and
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not in the base. These sets are added together to form E,.

An example of a change-merge on exception sets is found in

Figure 27.

ED&.e = EXCEPTIONS

EXCEPTION1,
EXCEPTION2,
EXCEPTION3

EA = EXCEPTIONS E9 = EXCEPTIONS
EXCEPTION1, EXCEPTION1,
EXCEPTION2, EXCEPTION3,
EXCEPTION5 EXCEPTION4

EM = EXCEPTIONS
EXCEPTION1,
EXCEPTION4,
EXCEPTION5

Figure 27. Example: Merging Exception Sets.

(3) Timing Information

There are three different types of timing

information found in specifications of PSDL operators, Maximum

Execution Time(MET), Maximum Response Time(MRT), and Minimum

Calling Period(MCP) . MET is the maximum CPU time that an

operator can use to perform its assigned task. MRT is the

maximum amount of real time between the arrival of an input

value on the input stream and the placement of an output value

on the output stream. MCP is the minimum amount of time

between invocations of an operator.
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Change-merging MET, MRT and MCP timing

information is done in much the same way as state variable

definitions. If the timing information is unchanged in both

modifications from the base, then it will remain the same in

the change-merged version. If it is the same in one of the

modifications as the base, but different in the other, then

the changed value will be the value assigned to the change-

merged version. If all three versions contain a different

timing value, then the change-merged version will contain a

timing value of T. Examples are shown in Figure 28.

MET 20 [ MET 20 ] MET 20 MET 20

MCP 40 [ MCP 40 ] MCP 30 MCP 30

MRT 10 [ MPT 20 ] MRT 30 MRT T

Figure 28. Examples: Merging Timing Information.

2. Functionality

The functionality of an operator specification is

what differentiates it from other operators. Through the use

of keywords, the operator can be distinguished from other

operators in the database during the retrieval process. Text

descriptions are provided for use by the engineer. Axiomatic

descriptions are provided to allow expert system techniques to

be used in the retrieval process.
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a. Keywords

The keywords section of an operator

specification is a set of distinguishable words which

explicitly identifies the functionality of the operator. The

order of these words is not significant. The change-merging

of the set of keywords is done in the same way as the set of

exceptions.

b. Informal Description

The informal description of a PSDL operator is

a textual explanation of the functionality of the operator.

It has no formalized sub-structure, therefore, the accurate

change-merging of textual explanations, is not within the

scope of this thesis. It is assumed that accurate change-

merging of the informal description will be done by the

engineer overlooking the change-merge operation.

c. Formal Description

The formal description of the PSDL operator

provides an axiomatic representation of the functionality of

the operator. Mathematical properties can potentially be

automatically change-merged using currently available

technology, but as this portion of the language has not yet

been determined in detail, it is impossible for us to provide

a method at this time.

B. DATA FLOW DIAGRAMS

A PSDL Data Flow Diagram, for an operator A, is a graph

DA = {O, L), where 0 is a set of vertices which represent the
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component operators of A, including the constant operator EXT

representing external contacts, and where L is a set of

links(labelled edges) which represent the data streams

entering and leaving the elements of 0. The labels for the

links are the names of the data streams they represent.

Between any two vertices, 01 and 02, there is an edge for

each data st earn, x, that is an output of o and an input for

02. A data flow diagram can have parallel edges, since

operators can have multiple outputs and/or multiple inputs.

Figure 29 shows three examples of FSDL Data Flow Diagrams:

1. An operator with no inputs or outputs.

2. An operator with one input and one output.

3. A composite operator with multiple data streams between
its two component operators and multiple output streams.

We define the change-merging operations on PSDL data flow

diagrams in terms of a bipartite graph B, {V, S, LI, LO),

where V is the set of operators in DA, S is a set of vertices

which represent the data streams of operator A, LI is a set of

edges from a stream vertex to an operator vertex, representing

input links, and LO is a set of edges from an operator vertex

to a stream vertex, representing output links. According to

this model, the data flow diagrams in Figure 29 have the

following bipartite graph representations:
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A

3.

Figure 29. Example: PSDL operator Data Flow Diagrams

1. G.V = {A,EXT)
G.S = (I
G.LI
G.LO

2. G.V = MBEXTI
G.S = {a,b}
G. LI = j (a, B) ,(b, EXT)}
G.LO = {(EXT,a),(B,b))

3. G.V = {C,D,EXTI
G. S = {x,j, k,y, z)
G.LI = I(x,C) ,(j,D) ,(k,D) ,(y,EXT) ,(z,EXT))
G. LO = ( (EXT, x) , (C, j) , (C, k) , (D, y) , (D, z)

Figure 30 gives graphical illustrations of these

bipartite graphs.

The bipartite graph models have no edges which link an

operator vertex with another operator vertex, or a stream
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1. 2.

A a B-

3.

y
-X Q D

z

Figure 30. Example: Corresponding Bipartite Graphs for
Examples in Figure 29.

vertex with another stream vertex. For each input to an

operator vertex, vj, there is an edge in LI which flows from

a stream vertex sj. For each output from an operator vertex

v,, there is an edge in LO which flows to a stream s2.

Change-merging the data flow diagrams is done by change-

merging the graphs G,,,,, G, and C% by subsets V, S, LI and LO.

The operations U, n, and - can be interpreted as the

corresponding operations U, n, and -. The following equation

defines the way this change-merge is accomplished:

G.= G - G,...j U [G. H Ga] U CG, - G....
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The greatest common approximation is obtained for the

Base and the two modifications by taking the intersection on

all components of the graph. Then these common components are

added to the disjoint components of each modification by

subtracting out the parts of the two modifications which are

also in the base. This operation preserves the functionality

common to all the versions, while ensuring that significant

changes made by the two modifications are included in the

change-merged graph. An example of change-merging operations

on bipartite graphs is shown in Figure 31, and illustrated

graphically in Figure 32.

Base.V = {A,EXT}
Base.S = {x,y}
Base.LI = {(x,A),(y,EXT)}
Base.LO = { (EXT,x) , (A,y) }

A.V = {A,A1,EXT} B.V = {A,B,EXT}
A.S = {x,y} B.S = {x,y,t}
A.LI = { (x,A) , (x,Al) , B.LI = { (x,A) , (y,B),

(x,y,EXT) } (t,EXT)}
A.LO = {(EXT,x),(A,y), B.LO = {(EXT,x),(A,y),

(Al,y) } (B,t)}

M.V = {A,AI,B,EXT)
M.S = {x,y,t}
M.LI = { (x,A), (x,Al), (y,B), (tEXT)}
M.LO = { (EXT,x), (A,y), (Al,y), (B,t)}

Figure 31. Example: Merge Operation on Data Flow Diagrams.

In this example, the change-merged set of operator

vertices is obtained by adding together the operator vertices

which are common to all three versions with the operator
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Base:

A:

B:

Figure 32. Graphical Illustrations for the Merging Operation
in Figure 31.

vertices which are particular to the modifications. The sets

of stream vertices and the sets o7 edges are treated

similarly.
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C. DATA STREAMS AND CONTROL CONSTRAINTS

1. Data Streams

A set of data stream definitions, DSA defines

variables which exist internally to the operator, A, and are

not defined in the specification. The order in which the

declarations appear is not significant. They have the same

structure as exception declarations, and can be change-merged

using the same rules. If a stream appears in DS,.., then it

appears in DSM if and only if it appears in both DSA and DS.

If a stream does not appear in DSo.., then it appears in DS, if

and only if it appears in at least one of the sets DSA and DS,.

i. x E DSBA.. A x E DSA A x E DS, 9  x E DS,.

2. x E DSB... A "(X E DSA A x G DS,) 4 -1(x E DS,).

3. (x E DS,...) A (X E DSA v x E DS,) XE DS.

4. -(x E DS,...) A - (x E DSA V x E DS,) -(x E DS,).

2. Control Constraints

Control constraints are a set of pre-conditions

which control the firing of particular components, and post-

conditions which determine the output provided by those

components. The control constraints appear in the change-

merged operator according to the same rules as the data stream

definitions. Any control constraint which appears in all

three input versions in the exact same way will appear in the

change-merged operator without change. Any operator which

appears in one or both of the modifications, but not in the
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base, will appear unchanged as long as the conditions of the

constraint are the same. Changes in conditions are handled

differently depending on the type of constraint. Input and

output guards, and conditional exceptions, "TRIGGERED IF",

"OUTPUT IF", "EXCEPTION IF", and timer operations have logical

predicates as conditions. Timer operations are not change-

merged as straight-forwardly as other predicate c nstraints.

Different operations exist for different activities. Start,

stop, read, and reset are the four timer operations used in

FSDL. The read operation has no effect on the state of the

timer, so these operations can be merged independently. If a

read operation appears in all three versions, or appears in at

least one of the modifcations, but not in the base, then it

appears in the change-merged version as well. The other timer

operations do affect the state of the timer. The start and

stop operations affect the run state of the timer, and the

reset operation affects the value state of the timer. The

reset operation is thus independent of the others, and hence

cna be merged according to the same rules as the read

operation. The start and stop operations must be change-

merged using a flat lattice ordering relation, as with inputs

and outputs. This lattice is shown in Figure 33. The

predicates which accompany the control constraints are change-

merged according to the usual rule, A[Base)B = (A - Base) U

(A II B) I (B - Base), where the operations ii, [i, and - are

interpreted as follows:
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I. a b avb

2. a b aAb

3. a -b a A 7b

/T
start stop

Figure 33. Start and Stop Timer Operations are Merged Using a
Flat Lattice Ordering Relation.

"PERIOD" and "FINISH WITHIN" have integer values as

conditions. These values are ordered using a flat lattice and

can be change-merged in the same way as described for Maximum

Response Time and Minimum Calling Period. An example of a

control constraint change-merge is shown in Figure 34. In

this example, the constraint on A2 does not appear in M

because it appeared in Base and B, but not in A. The

constraints on A3 and A4 appear in M because they are not in
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the base and do appear in one of the modifications. The

predicate for the constraint on Al is different in A and B, so

according to the rule above, the result of the merge is

calculated as fol-'ows:

y < 0 [ y 0 ] y > 0=
(y < 0 9 "(y 0)) v (y < 0 A y 0) v (y 0 ^ "(y < 0)

= False v False v (y 2 0 ^ (y > 0)
(y > 0).

The "READ" operation appeared in the change-merged

version, because it appeared in one of the modifications. the

other timer operation did not appear in the merged version,

because it did appear in the base and in one of the

modifications, but not in the other.

Cs... = CONTROL CONSTRAINTS
Al TRIGGERED IF y < 0
A2 TRIGGERED BY SOME x
START TIMER2 IF TRUE
READ TIMER1 IF z < 0.01

CA =C, =
CONTROL CONSTRAINTS CONTROL CONSTRAINTS

Al TRIGGERED IF y _ 0 Al TRIGGERED IF y < 0
A3 PERIOD 30 ms A2 TRIGGERED BY SOME x

A4 FINISH WITHIN 20 ms
START TI1MER2 IF TRUE

CM = CONTROL CONSTRAINTS
Al TRIGGERED IF y > 0
A3 PERIOD 30 ms
A4 FINISH WITHIN 20 ms
READ TIMER1 IF z < 0.01

Figure 34. Example: A Merge of Control Constraints.
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D. CORRECTNESS OF CRANGE-MERGE OPERATION

Thus far, we have described a model which provides for

separate merging of specifications and implementations. We

have demonstrated that for the individual cases, the model

either produces a program which is syntactically correct or

provides evidence to indicate where an inconsistency exists.

There are still two things that need to be shown. First, we

must show that the change-merged implementation is consistent

and correctly implements the change-merged specification.

Sub-section 1, below, provides a boolean function Imp(Graph,

Specification) which is true if the interface of Graph

corresponds to Specification, and a theorem which defines the

necessary conditions for a consistent change-merge. Secondly,

we must discuss the semantic properties of our model. These

are discussed in sub-section 2, below.

1. Consistency of Model

In developing our model for the change-merge

operation, we chose to handle the specifications and

implementations separately. This is beneficial for developing

the change-merge model, but requires showing that the

implementation produced by the change-merge correctly

implements the change-merged specification. Consistency

between an implementation and a specification is defined as

follows:
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Imp: PSDL Graph X PSDL Spec * Bool

Imp(GA,, SpA) '
x E IA 4-- (x E A.S A (EXT, x) E A.LI) A

y E Oj,4- (y E A.S A (y, EXT) E A.LO) A

z E StA * (z E DSA A 3w E A.V [(w, z) G A.LI]
A 3v E A.V [ (z, v) E A.LOI)

This definition states that the graph GA correctly

implements the specification SpA if and only if all of the

following are true:

1. A x will appear in the input set of the specification if
and only if it appears in the set of streams of the graph,
and there is an edge in the set of input links from
EXT to x.

2. A y will appear in the output set of the specification
if and only if it appears in the set of streams of the
graph, and there is an edge in the set of output links from
y to EXT.

3. A z will appear in the set of states in the
specification if and only if it appears in the set of data
streams of the operator, and there is an operator, w, in the
set of vertices of the graph such that there is an edge from
w to z in the set of input links, and there is an operator,
v, in the set of vertices of the graph such that there is an
edge in the set of output links from z to v.

To show that the change-merged implementation is

consistent with its specification, we provide the theorem in

Figure 35. This theorem shows that if the three input

versions are consistent, the change-merged version will be

consistent. Our proof of this theorem is contained in

Appendix B.

2. Semantic Properties of the Model

The least common extension of two programs provides

the desired semantics for a merging operation, but as was
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THEOREM: If SpA, Sp,.,, and Sp. are PSDL operator
specifications, BA, B,,., and B9 are operator graphs,
Imp(BA, SPA), Imp(BB.., Sp...) and Imp(BB, Sp,),
then Imp(BA[B9...]B,, Sp,[Sp.o.] Spa).

Figure 35. Consistency of Change-merge.

pointed out in (Ref. 10], this is not computable in the

general case. We write the partial function computed by an

operator implementation as F(GA) . Thus, the partial function

computed by the resultant implementation of our change-merge

is F(GM) . The result of a semantic merge on the three partial

functions, F(G,) [F(Ga..) ]F(G,) is written as FM. The ideal

result for our model is: F(G) = FM. This ideal cannot always

be realized in practice, because FM is not computable in the

general case.

The best result that may be practically realizable

is: FM F F(GM). In this situation, the change-merge

operation produces a result which is compatible with the ideal

result, but which may contain inconsistent values, T, in some

cases where an ideal semantic merge produces a proper result.

The worst acceptable result is: F(B,) E Fm. In this

situation, the result of the change-merge is also compatible

with the ideal result, but may diverge in some cases where the

semantic merge has a proper value. This situation is less

desirable, because it cannot be detected at merge time. This

result is the weakest reliable one, which says that the merge
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produces a correct result whenever it produces a proper

result. 5 The approximation argument given in [Ref. 10) for

two input merges is also applicable to change-merges. We have

discovered that the result of the change-merge is semantically

correct in most cases, but we have not proved correctness in

all possible cases, so that complete correctness is not

guaranteed. We conjecture that the model satisfies the

property, Vx E Domain (I * F(Gm) * T) t F(GM) (x) = F,(x) ,

which is halfway between the best pratically realizable

situation and the worst acceptable situation.

E. SUMMARY

In this chapter, we have described a model for change-

merging PSDL proarams. This model divides the problem into

three distinct sub-problems and tackles them individually.

What we have found is that when broken down, these problems

are relatively simple. Simple set operations are used in most

cases to perform the change-merge operation. Once the change-

merge operation is performed, a consistency check can be

performed to ensure that the change-merged implementation

accurately represents the change-merged specification.

Semantically, this model provides a correct merge in most

cases, but the correct result is not guaranteed.

5Proper results are normal data values, produced by

computations that terminate cleanly.
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IV. CONCLUSION

Software is always changing. Whether the change is part

of the normal evolution process, or is necessary to fix a

problem, it is still a complicated process. The larger

software systems become, the more complicated making changes

becomes.

A. BENEFITS TO SOFTWARE ENGINEERING

New methods of software development have emerged, such as

Rapid Prototyping, which require the ability to quickly create

and adapt a prototype to meet the user's needs. This, in

turn, makes it necessary to make changes very rapidly. The

only way to effectively make changes rapidly, especially to

very large systems, is through automation.

The need for automatically making changes arises when a

series of software systems have been developed from a common

base system, and a change has to be made to the base. If an

automated way of propagating the change through all the

versions is available, then the software maintainer will save

a lot of time, and the end product will probably have fewer

errors. This thesis has been directed at defining a method

for doing this automatic change propagation.
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B. BENEFITS TO CAPS RESEARCH

The Computer Aided Prototyping System, being developed at

the Naval Postgraduate School, is a rapid prototyping system.

The language used in CAPS, PSDL, is very adaptable to

automatic change propagation. We have developed a model for

merging three versions of a PSDL program, a base version, and

two modifications. We call this three input merge operation,

"change-merging". This model can be used, not only for

automatically propagating changes through a series of software

systems, but can be used to combine the characteristics of two

different software systems, which were developed from a common

base.

The model is effective for change-merging different

versions of a common PSDL program, and we have shown that as

long as the result of the change-merge is not an

inconsistency, the merged implementation will correctly

represent the merged specification. The semantic result of

the change-merge has been shown to be correct most of the

time.

This model theoretically provides the ability for the

engineer writing a prototype, or a series of prototypes, to

develop a change to the base version and press a button to

invoke the merging mechanism to automatically update all

versions of the system. It can also be used to automatically

update a series of prototypes in the software base, developed

from a common base.
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C. VURTHER RESEARCH

In this thesis, we have provided a model on which the

change-merger can be based for programs written in PSDL. Our

work leads to a method that produces correct results most of

the time, but the degree of correctness has not been formally

established. Future work should classify the results by how

close they come to an ideal semantic merge, suggest stronger

approximations that produce results even closer to the ideal

semantic merge, and prove the partial correctness of the

results.

Eventually, an attempt should be made to develop a

change-merger for Ada code, so that data types and PSDL

operators implemented in Ada code can be included in the

change-merger. For the change-merger to become a reality as

currently modelled, a high level language description and

specification must be developed, and eventually, the program

must be coded in a programming language such as Ada.
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APPENDIX A. PSDL GRAMOAR

This grammar uses standard symbology conventions. {Curly

Braces) enclose items which may appear zero or more times.

[Square Brackets] enclose items which may appear zero or one

time. Bold Face items are terminal keywords. Items contained

in "Double Quotes" are character literals. The "I" vertical

bar indicates a list of options from which no more than one

item may be selected. This grammar represents the current

version of the PSDL grammar as of 20 June 1990.

Start = psdl

psdl = {component}

component = data-type I operator

datatype = type id type_spec type_impl

operator = operator id operator spec operator impl

typespec = specification [generic_param) [typedecl]

{operator id operatorspec) [functionality] end

type_impl = implementation ada id "{" text "}" end

I implementation type-name

(operator id operatorimpl} end

operator_spec =

specification (interface} (functionality] end

operator impl = implementation ada id "(" text "}"

I implementation psdlimpl
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type_decl =

id-list ":" typename {"," id list ":" type name}

functionality = [keywords] [informal des7] [formal desc]

psdlimpl = dataflowdiagram [streams] [timers)

[control-constraints] [informaldesc] end

type_name = id i

id "[" actualjparameter list "]"

id "[" type_decl "I]"

actualyparameter list = actual_parameter

{ "," actualyParameter )

actual_parameter = typename I expression

interface = attribute [reqmtstrace]

id list = id ("," id)

keywords = keywords id list

informal desc = description "{" text "}"

formal desc = axioms "{" text "}"

dataflow diagram = graph {vertex} {edge}

streams = data stream type decl

timers = timer id ±ist

attribute = input
I output
I generic_param
states

I exceptions
I timing-info

input = input typedecl

output = output typedecl

generic_param = generic typedecl

states = states type decl initially expression-list
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exceptions = exceptions id list

timing info = [maximum execution time time]
[minimum calling period time)
[maximum response time time]

reqmtstrace = by requirements id list

vertex = vertex op_id [":"time)

edge edge id [":"time] op id "->" op_id

op id = id ("(" [id list] "I" [idlist] ")"]

control-constraints = control constraints {constraint}

constraint = operator id
[triggered (trigger I [trigger] if predicate)

[reqmts trace]]
[period time [reqmts trace]]
[finish within time Treqmts trace]]
{constraint_options}

trigger = by all id list
I by some id list

constraint-options =
ontput id list if predicate [reqmtstrace]

I exception-id [if predicate] [reqmtI-trace]
I timer_op id [if predicate] [reqmts_trace]

timerop = read timer
I reset timer
start timer

I stop timer

expression-list = expression {"," expression)

time = integer [unit]

unit = ms I sec I min I hours

expression = constant
I id
I type-name "." id "(" expression-list ")"

predicate = simple_expression
I simpleexpression relop simpleexpression
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simple expression = [sign] integer [unit]
[sign] real

I [not] id
i string
[ot] "(" predicate ")"
[not] boolean constant

bool op = and I or

rel op = "<" I <" i ">" I ">" " i ' ..

real = integer "." integer

integer = digit{digitj

boolean constant = true I false

numeric constant = real i integer

constant = numeric constant I boolean constant

sion = "+" I ...

char = any printable character except "}"

digit = "0 9"

letter = "a z" I "A Z" I .

alphanumeric = letter I digit

id = letter{alphanumeric}

string = """ text ......

text = {char}
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APPENDIX B. PROOF: CONSISTENCY OF CHANGE-MERGE THEOREM

This appendix contains the proof of our Consistency of

Change-merge theorem in Chapter III, Figure 35.

PROOF:
Let M = A[Base]B be the result 'nt operator after a

change-merge operation.

Assume: Imp (G,, SPA) , Imp (Gs..., Sp ...) and Imp (Ga, Sp,)

Need to Show: Imp(GM, Spm)

Assume x E I,, y C Q,, and z E St,.

Need to Show A. (x E M.S A (EXT,x) E M.LI)

B. (y E M.S (y, EXT) ( M.LO)

C. (z E DSM 3 w E M.V [(w, z) E M.LI]

, C 3v E M.V [(z, v) C M.LO]

A. There are two possibilities: x C IB... and -"(x G IB...)

Case 1: x C Is.

Then by definition of change-merge, x E I A x E I .

Since Imp(G,,.., Sp,...) , Imp(GA, SPA) and Imp(G,, Sp)

Then x E Base. S ^ (EXT, x) ( Base. LI) ,4

x E A.S , (EXT, x) E A.LI)

x C B.S , (EXT,x) E B.LI)

And by definition of change-merge

x E M.S ^ (EXT, x) E M.LI) (A.)
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Case 2: '(x C 12B*.)

Then by definition of change-merge, x E A I C 'B.

Since Imp(Gn.., Sp,...) , Imp(Ga, SpA) and Imp(G,, SP,),

Then "(x E Base. S A (EXT,x) E Base. LI)) A

((x E A.S A (EXT, x) G A.LI) v

(x E B.S A (EXT,x) E B.LI))

Since (EXT,x) E Base. LI -- x G Base. S

Then x E Base. S A (EXT, x) E Base. LI 14-

(EXT,x) C Base. LI

Thus '"(x C Base. S ^ (EXT, x) G Base. LI)) ¢

-'(EXT,x) E Base.LI

Thus (EXT,x) G A.LI , (EXT,x) C B.LI

And x E A.S x E B.S

And by definition of change-merge

x G M.S -, (EXT,x) E M.LI) (A.)

B. There are two possibilities: y E 0,... and "(y C OB...)

Case 1: y G O,a.

Then by definition of change-merge, y 0 , - y E 0'.

Since Imp(G,*,, Sp,...) , Imp(G,, SpA) and Imp(GB, SpB),

Then y E Base.S A (yEXT) E Base.LO) ^

y C A.S A (y,EXT) C A.LO) A

y E B.S A (y, EXT) E B.LO)

And by definition of change-merge

y E M.S A (y, EXT) E M.LO) (B.)
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Case 2: "(y E O,...)

Then by definition of change-merge, y E OA v y E 0.

Since Imp(G,..., Sp,..) , Imp(GA, SpA) and Imp(G9 , SpI,),

Then - '(y E Base. S A (y,EXT) E Base.LO)) A

((y E A.S ^ (y, EXT) A.LO)

(y E B.S A (y, EXT) E B.LO))

Since (y,EXT) E Base.LO y E Base.,-

Then y E Base.S A (y,EXT) E Base.LO ¢

(y,EXT) G Base.LO

Thus '(Y E Base.S /- (y,EXT) E Base.LO)) 4

-(y,EXT) G Base.LO

Thus (y, EXT) E A.LO , (y, EXT) E B.LO

And y E A.S v y E B.S

And by definition of change-merge

y E M.S , (y, EXT) E M.LO) (B.)

C. There are two possibilities: z E St,... and "(z St,...)

Case 1: z E Sts°..

Then by definition of change-merge, z E StA - z e St,.

Since iXp(G.oo, Sp,...), Imp(G,, SpA) and Imp(GB, SpB) I

Then (z E D S,.o A 3w E Base.V [(w, z) E Base. LI]

A 3v E Base.V [(z, v) E Base. LO]) A

(z E DSA A 3w E A.V [ (w, z) E A.LI]

A 3v E A.V [(z, v) E A.LOJ)A

(z E DS9 A 3w E B.V [(w, z) E B.LI]

3v E B.V [(z, v) E B.LO])
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And by definition of change-merge

(z G DSM A 3w E M.V [ (w, z) E M.LI]

3 3v E M.V [(z, v) E M.LO]) (C.)

Case 2: "(z E Ste...)

Then by definition of change-merge, z E Stk v z E Ste.

Since Imp(G...o, SpBa..) , Ip(GA, SPA) and Imp(Ge, Sp,),

Then "(z E DS ... A 3w E Base.V [(w, z) E Base.LI]

A 3v E Base.V [(z, v) E Base.LO]) A

((z E DS, A 3w E A.V [(w, z) E A.LI]

^ 3v E A.V [(z, v) E A.LO])

(z E DSB  3 w E B.V (w, z) E B.LIj

A 3v E B.V ((z, v) E B.LQ]))

And by definition of change-merge

(z E DSM . 3w E M.V [(w, z) £ M.LI]

A 3v E M.V [(z, v) E M.LO]) (C.)

Therefore by A, B, and C we conclude

x G IM (x E M.S - (EXT, x) E M.LI)

y E 0, (y e M.S A (y, EXT) E M.LO)

z G St, (z G DSM ^ 3w G M.V [(w, z) C M.LI]

3v E M.V [(z, v) E M.LO]

Assume (x E M.S A (EXT, x) E M.LI) and

(y E M.S ^ (y, EXT) G M.LO)

Need to Show D. x E I M

E. yE 0O,
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D. There are two possibilities:

x E Base.S A (EXT,x) E Base.LI and

"(x E Base.S A (EXT,x) E Base.LI).

Case 1: x E Base.S A (EXT,x) E Base.LI

Then by definition of change-merge,

x E A. S A (EXT, x) E A. LI A

x E B. S A (EXT, x) E B. LI

Since Imp (Ga..., Spa ...) , Im(GA,, Sp.) and Imp (GIB, Spa)

X G 'B... A X E ' A A X E I,

And by definition of change-merge, x E I,. (D..)

Case 2: -1 x G Base. S A (EXT, x) G Base. LI)

Since (EXTx) E Base.LI => x E Base.S

Then x E Base. S -, (EXT, x) E Base. LI

(EXT, x) G Base. LI

Thus " (x E Base. S A (EXT, x) E Base. LI))

-'(EXT,x) G Base.LI

Thus (EXT,x) CA.LI v (EXT,x) E B.LI

And x E A. S x E B. S

Then x E A. S A (EXT, x) E A. LI

x E B.S A (EXT,x) E B.LI

Since 1Mp(G3... , Sp5 ... ), IAp(GA,,SPA) and Xmp(Ga, Spa),

" CX Is...) A (x C I, V X E I,)

And by definition of change-merge, x E I,. (D.)

78



E. There are two possibilities:

y E Base.S A (y,EXT) E Base.LO and

I ( Base. S A (y, EXT) E Base. LO) .

Case 1.: E Base. S A (y, EXT) E Base. LO

Then by definition of change-merge,

y E A. S A (y, EXT) E A. LO A

y E B. S A (y, EXT) E B. LO

Since Imp (G,..., Spi,..) , Imnp(G,, SpA) and Imp (GB, SpB)

yE 1..A y 'Ai A y EB

And by definition of change-merge, y E N

Case 2: -( (E Base.S A (yEXT) E Base.LO)

Since (y,EXT) E Base.LO =* y G Base.S

Then y (z Base.S .. (y,EXT) E Base.LO

(y,EXT) E Base.LO

Thus '(y E Base.S - (y,EXT) E Base.LO)) 4--

-'(y,EXT) E Base.LO

Thus (y,EXT) E A.LO -. (y,EXT) E B.LO

And y A.S ,y C_ B.S

Then y CA.S A (y,EXT) E A.LO

y CB. S A(y, EXT) E B. LO

Since Im( 5 ,, 5 .. ) mp(G,,Sp,) and Imp(G9 , p.),

-n '(y E (y E 19 V y' E I,,)

And by detinition of change-merge, y E 1,. (E.)
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Therefore by D and E we conclude

(X E M. S A (EXT, x) E M. LI) x E IH
(y E M. S ^ (y, EXT) E- M. LO) ~'y E- o,,

Therefore By (==) and Xxop Im(Gm, Spm). El

80



LIST OF RZFERZNCES

1. Berzins, V., Unpublished Class Notes from CS4500, January
1990, Naval Postgraduate School, Monterey, California 93940.

2. Fountain, H., Rapid Prototyping: A Survey of
Methodologies and Models, Master's Thesis, Naval Postgraduate
School, Monterey, California, March 1990.

3. Schneidewind, N., "The State of Software Maintenance",
IEEE Transactions on Software Engineering, pp. 303-310, March
1987.

4. Borison, E., "A Model of Software Manufacture",
Proceedings of an International Workshop, Trondheim, Norway,
pp. 197-220, Springer-Verlag, June 1986.

5. Naval Postgraduate School, Report NPS52-90-014 , A Graph
Model of Software Maintenance, by Mostov, I., Luqi, and
Hefner, K., 1989.

6. Luqi, "Software Evolution Through Rapid Prototyping",
IEEE Computer, May 1989.

7. Luqi, Berzins, V., and Yeh, R., "A Prototyping Language
for Real Time Software", IEEE Transactions on Software
Engineering, pp.1409-1423, October 1988.

8. White, L., The Development of a Rapid Prototyping
Environment, Master's Thesis, Naval Postgraduate School,
Monterey, California, December 1989.

9. Altizer, C., Implementation of a Language Translator for
the Computer Aided Prototyping System, Master's Thesis, Naval
Postgraduate School, Monterey, California, December 1988.

10. Berzins, V., "On Merging Software Extensions", Acta
Informatica, Vol. 23, pp. 607-619, 14 July 1986.

11. Horwitz, S., Prins, J., and Reps, T., "Integrating Non-
Interfering Versions of Programs", Conference Record of the
Fifteenth ACM Symposium on Principles of Programming
Languages, Association for Computing Machinery, New York, New
York, 13 - 15 January 1988.

81



GLOSSARY

Approximates - A program P approximates another program Q if
P is defined everywhere that Q is defined. Q may or may not
be defined in places where P is undefined.

Bipartite - A bipartite graph is a graph in which the
vertices can be divided into distinct sets, where there exists
no edge from one vertex to another within the same set.

Computer-Aided Prototyping System(CAPS) - This system is
being developed by Dr. Berzins and Dr. Luqi at the Naval
Postgraduate School for use in Rapid Prototyping of Real-Time
Systems.

CPU - Central Processor Unit

Directed Acyclic Graph(DAG) - It is a graph which contains
directed edges and no cycles.

Feasible - Any PDG G, is feasible if it is a PDG for a
program P. The slice G/S is feasible if S c V(G) and G is
feasible.

FIFO - First In First Out.

Greatest Common Approximation - The greatest common
approximation of two programs is considered to be a program
which approximates both programs and contains all of the
functionality common to both programs.

Least Common Extension - The least common extension of two
programs is the result of merging the functionality contained
in both programs. Both input programs approximate the least
common extension.

Program Dependence Graph(PDG) - Used by Horwitz et al. to
abstractly represent programs. It consists of a set of
vertices and a set of edges which link these vertices. The
vertices represent operations performed in the program, and
the edges represent control flow and data flow dependences
between those operations.

Prototyping System Description Language(PSDL) - Rapid
prototyping language developed by Dr. Luqi at the Naval
Postgraduate School for use in designing prototypes within the
CAPS system.
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Software Maintenance - All activities performed on a software
system during its life time to enhance or repair the system.

Software Manufacture - The combining of primitive components
of a software system, through a sequence of derivations, into
one or more software products.

83



BIBLIOGRAPHY

Naval Postgraduate School, Report NPS52-89-023, Computer
Languages for Rapid Prototyping, by Luqi, March 1989.

Naval Postgraduate School, Report NPS52-90-004, Maintenance
Problems in Military Software Systems, by Mostov, I. and Luqi,
August 1989.

University of Oregon, CIS-TR-89-02, Automating the Parallel
Elaboration of Specifications: Preliminary Findings, by W.
N. Robinson, 7 February 1989.

University of Oregon, CIS-TR-89-03, Integrating Multiple
Specifications Using Domain Goals, by W. N. Robinson, 23
February 1989.

University of Oregon, CIS-TR-89-13, Negotiation Behavior
During Multiple Agent Specification: A Need for Automated
Conflict Resolution, by W. N. Robinson, 6 September 1989.

University of Wisconsin-Madison, Computer Sciences Technical
Report 856, On the Algebraic Properties of Program
Integration, by T. Reps, June 1989.

Tanik, M. and Yeh, R., "Rapid Prototyping in Software
Development", Computer, vol. 22, pp. 9-10, May 1989.

Wilde, N., Huitt, R. and Huitt, S., "Dependency Analysis
Tools: Reusable Components for Software Maintenance",
Proceedings of the Conference on Software Maintenance - 1989,
IEEE, Washington, District of Columbia, 16 - 19 October 1989.

84



INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

Superintendent 2
Attn: Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5000

Superintendent 1
Attn: Director of Research Administration, Code 012
Naval Postgraduate School
Monterey, California 93943-5000

Chairman, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

Office of Naval Research 1
800 N. Quincy Street
Arlington, Virginia 22217-5000

Center for Naval Analysis 1
4401 Ford Avenue
Alexandria, Virginia 22302-0268

National Science Foundation 1
Division of Computer and Computation Research
Washington, District of Columbia 20550

OP-941 1
Office of the Chief of Naval Operations
Washington, District of Columbia 20350

OP-945 1
Office of the Chief of Naval Operations
Washington, District of Columbia 20350

Commander 2
Naval Telecommunications Command
4401 Massachusetts Avenue NW
Washington, District of Columbia 20390-5290

85



Commander
Naval Data Automation Command
Washington Navy Yard
Washington, District of Columbia 20374-1662

Dr. Lui Sha
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15260

Colonel C. Cox, USAF
JCS (J-8)
Nuclear F, rce Analysis Division
Pentagon
Washington, District of Columbia 20318-8000

Commander
Code 5150
Naval Research Laboratory
Washington, District of Columbia 20375-5000

Defense Advanced Research Projects Agency (DARPA)
Inteqrated Strategic Technology Office (ISTO)
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

Defense Advanced Research Projects Agency (DARPA)
Director, Naval Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

Defense Advanced Research Projects Agency (DARPA)
Director, Prototype Projects Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

Defense Advanced Research Projects Alency (DARPA)
Director, Tactical Technology Office
1400 Wilson Foulevard
Arlington, Virginia 22209-2308

Dr. R. M. Carroll (OP-01B2)
Office of the Chief of Naval Operations
Washington, District of Columbia 20350

Dr. Aimram Yehudai
School of Mathematical Sciences
Tel Aviv University
Tel Aviv, Israel 69978

86



Dr. Robert M. Balzer
Information Sciences Institute
University of Southern California
4676 Admiralty Way, Suite 1001
Marina del Ray, California 90292-6695

Dr. Ted Lewis
Editor-in-Chief, IEEE Software
Computer Science Department
Oregon State University
Corvallis, Oregon 97331

Dr. R. T. Yeh
International Software Systems Inc.
12710 Research Boulevard, Suite 301
Austin, Texas 78759

Dr. C. Green

Kestrel Institute
.1801 Page Mill Road
Palo Alto, California 94304

Frofessor D. Berry
Department of Computer Science
University of California
Los Angeles, California 90024

Director
Naval Telecommunications System Integration Center
HAVCOMMUNIT Washington
Washington, District of Columbia 20363-5110

Dr. Knudsen
Code FD50
Space and Naval Warfare Systems Command
Washington, District of Columbia 20363-5110

(

Ada Joint Program Office
ATTN: OUSDRE(R&AT)
Pentagon
Washington, District of Columbia 23030

Captain A. Thompson, United States Navy
Naval Sea Systems Command
National Center #2, Suite 7N06
Washington, District of Columbia 22202

Dr. Peter Ng
Computer Science Department
New Jersey Institute of Technology
Newark, New Jersey 07102

87



Dr. Van Tilborg
Office of Naval Research
Computer Science Division, Code 1133
800 North Quincy Street
Arlington, Virginia 22217-5000

Dr. R. Wachter
Office of Naval Research
Computer Science Division, Code 1133
800 North Quincy Street
Arlington, Virginia 22217-5000

Dr. J. Smith, Code 121
Office of Naval Researh
Applied Mathematics and Computer Science
800 North Quincy Street
Arlington, Virginia 22217-5000

Dr. R. Kieburtz
Oregon Graduate Center Portland (Beaverton)
Portland, O-egon 97005

Dr. M. Ketabchi
Department of Electrical Engineering and Computer Science
Santa Clara University
Santa Clara, California 95053

Dr. L. Belady
Software Group, MCC
9430 Research Boulevard
Austin, Texas 78759

Dr. Murat Tanik
Computer Science and Engineering Department
Southern Methodist University
Dallas, Texas 75275

Dr. Ming Liu
Department of Computer and Information Science
Ohio State University
2036 Neil Avenue Mall
Columbus, Ohio 43210-1277

Mr. William E. Rzepka
U.S. Air Force Systems Command
Rome Air Development Center
ATTN: RADC/COE
Griffis Air Force Base, New York 13441-5700

88



Dr. C.V. Ramamoorthy
Department of Electrical Engineering and Computer Science
Computer Science Division
University of California at Berkeley
Berkeley, California 90024

Dr. Nancy Levenson
Department of Computer and Information Science
University of California at Irvine
Irvine, California 92717

Dr. Mike Reiley
Fleet Combat Directional Systems Support Activity
San Diego, California 92147-5081

Dr. William Howden
Department of Computer Science
University cf California at San Diego
La Jolla, California 92093

Dr. Earl Chavis (OP-162)
Office of the Chief of Naval Operations
Washington, District of Columbia 20350

Dr. Jane W. S. Liu
Department of Computer Science
University of Illinois
Urbana Champaign, Illinois 61801

Dr. Alan Hevner
College of Business Management
Tydings Hall, Room 0137
University of Maryland
College Park, Maryland 20742

Dr. Y. H. Chu
Computer Science Department
University of Maryland
College Park, Maryland 20742

Dr. N. Roussapoulos
Computer Science Department
University of Maryland
College Park, Maryland 20742

Dr. Alfs Berztiss
Department of Computer Science
Univrersity of Pittsburgh
Pittsburgh, Pennsylvania 15260

89



Dr. Al Mok
Computer Science Department
University of Texas at Austin
Austin, Texas 78712

George Sumiall
Headquarters
U.S. Army Communications and Electronics Command

ATTN: AMSEL-RD-SE-AST-SE
Fort Monmouth, New Jersey 07703-5000

Mr. Joel Trimble
1211 South Fern Street, C107
Arlington, Virginia 22202

Dr. Linwood Sutton 1

Code 423
Naval Ocean Systems Center
San Diego, California 92152-5000

Dr. Sherman Gee

Code 221
Office of Naval Technology
200 North Quincy Street
Arlington, Virginia 22217

Dr. Mario Barbacci
Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Dr. Mark Kellner
Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Dr. Valdis Berzins 10

Code 52Be
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

Dr. Luqi 2

Code 52Lq
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

Captain David A. Dampier, United States Army 2
8508 Hopewell
El Paso, Texas 79925

90


